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Abstract

After periodic signals pass through some nonlinear systems, they are usually transformed into noise-like and wide-band

chaotic signals. The discrete spectrums of the original periodic signals are often covered by the chaotic spectrums. Recovering the periodic

driving signals from the chaotic signals is important not only in theory but also in practical applications. Based on the modeling theory of

nonlinear dynamic system, a “polynomial-simple harmonic drive” non-autonomous equation { P-S equation) to approximate the original sys-

tem is proposed and the approximation error between P-S equation and the original system is obtained. By changing the drive frequency,

we obtain the curve of the approximation error vs. drive frequency. Based on the relation between this curve and the spectrums of the orig-

inal periodic signals, the spectrum of the original driving signal is extracted and the original signal is recovered.
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Chaos has been proved to be an important non-
linear phenomenon universally existing in natural and

artificial systems, such as the circumfluence of atmo-

(11 honlinear oscillation systemsm,

nonlinear electrocircuits'®’, focusing optical fiberst*!,

[5.6]

spheric systemns

the propagation of acoustic ray and many other

physical systems. At present, chaos has been widely

~10] e.g. chaotic synchroniza-

[8~10]

used in various fields!
tion and chaotic secure communication etc.
However, the uncontrolled chaos may also do harm to
the working of some systems, for example, in com-
plex artificial and natural systems, some uncontrol-
lable nonlinear factors might induce the behavior of
the original system into chaos, which will disturb the
signal one needs. Therefore the study of chaos control

has been developed[“].

The diagram shown in Fig. 1 describes one kind
of chaotic system which disturbs the periodic input
signal. Periodic signals are turned into noise-like
chaotic signals after they pass through some nonlinear
transmitting channels, i. e. these nonlinear systems
can cover the original periodic input and produce

chaotic noise. As a result, extracting and reconstructing

| Output Input
7 ¥ Nonlinear system s (1)

dy/dr=F ()

:

Fig. 1. Nonlinear system.

periodic driving signal from chaotic noise becomes a
new subject.

The above phenomenon can be described by the
following differential equation:

y= F(y) + s(z), (1)
where y is the state vector of the system and s{(¢) the
periodic driving signal. The system can produce chaos
with certain parameters. After periodic signal s (¢)
passes through the chaotic system, its discrete spec-
trum can be transformed into wide-band spectrum and
the original period is covered by the chaotic noise
(Fig.2). It should be noticed that here the chaotic
noise is not simply added to the periodic signal, but
contrarily, it is generated from the periodic signal by
the nonlinear system. Thereby, normal linear meth-
ods of extracting periodic signals appear to be ineffec-
tive in this kind of situation.

From the above discussion it can be seen that ex-
tracting periodic driving signal from chaotic noise is
significant for nonlinear dynamical noise reduction,
weak signal extraction and deep insight of the chaotic
system etc. On the basis of the nonlinear dynamical

[12-151 " this paper investigates a new

modeling theory
method of extracting periodic signal from the chaotic
output of the non-autonomous chaotic system. In our
scheme, we apply a “ polynomial-simple harmonic
drive” equation (P-S equation) to approximate the o-

riginal system and use the least square approximation
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error €2 between the P-S equation and the original
system as the approximation criteria. The driving fre-
quency of P-S equation is varied within a certain
range and the corresponding approximation error is
calculated for each of the frequency w. Then we ob-
tain the curve between the least square approximation
error € and the driving frequency w. Our theory dis-
covers that there exists a relation between e? — w
curve and the spectrum of s(z). Based on this theo-
ry, the frequency spectrum of the original driving sig-
nal can be extracted from the curve €2 — w and s(t)
is recovered from its spectrum without the need of
knowing the structure and parameters of the original
system.

1 Theory

In practice, one cannot usually observe all the
state variables of the system. For example, if only
the variable vy, is observed in Eq. (1), Eq. (1) can be
converted into the following standard form by use of

some algebraic transformationst' 137,

Y1 = Y2

Y2 = V3
.
3"D1 = gy, y2, 5 yp1) + s(t), (2)

where g is a nonlinear function and s(¢) is a driving
signal with period T;. s{t) can be described in the
form of Fourier expansion.

s(t) = ap + E(a,,cosnwlt + b,sinnwit),

n=1
where ay, a, and b, are Fourier coefficients. Thus
for an arbitrary periodic driving signal s(z), Eq.(2)
can be considered as a non-autonomous system with
multi-frequency drive.

We use the following P-S equation to approach
the non-autonomous system (2):

Y1 = Y2

Y2 = Y3

3"1) = f(y1>»¥2,""» yp) + acoswt + bsinwt, (3)
where v, is an observable, and f is a polynomial of an
order K ;
!

s
Yo

v, yp) = 2

Lplprip=

DIL<K. (4)

io1
The polynomial order K and the equation dimension

A

K D
=1

c
Liylyy
0o 172

D can be drawn on the results of time series analysis,
e.g. the correlation dimension'*!. The discrete time
series v; = y1 (iAt), i =1,2,--, N is obtained by
sampling the output state variable y; of the chaotic
system (1), where At is the sampling interval. In
this paper, our purpose is to recover the periodic driv-
ing signal from the observable {v;}.

1.1 The method of extracting periodic driving sig-

nal

Our method consists of the following three
steps:

(i) A series of state vector y(z;) = | (y;(¢;),
¥2(t:), o, v, (t; M is formed by using the method of

successive derivatives!'*].

(ii) An initial driving frequency wq of Eq. (3) is
selected. Then the least-square technique is used to
determine the other coefficients of Eq. (3) and make
the Eq. (3) approach Eq. (2), i.e. choosing coeffi-
cients €Lty @ and b to minimize the approxi-

mation error
1 &
e*(wo) =3y 25 [3n(n)
im1

= (2, y2085), -+, yp(2:))
— acoswyt; — bsinwgt; 1%, (5)

Ez(wo) = min.

(iii) Varying the driving frequency of Eq. (3)
w=wy+ jAw, j=1,2,, M and repeating step
(ii), we obtain the approximation error-frequency
(e, (w)~w) curve. Moreover, we found that the
magnitudes of the minimums are related to the Fouri-
er coefficients of the driving signal’s spectrum. So
the driving signal can be recovered from this curve.

. 2
1.2 Relation between €., (w) ~ w curve and power

spectrum

e? can be written as follows according to

Eq.(5):

e’ (w) = My +2M, + M3, (6)
where
M, :ﬁi[gwl(z,-),yzui),-‘-,ymu,-))
- J"_(yl(ti),yz(z,-),'-',yu(ti))}z,
M=k 32 Lelon (e ot o 3n (1)

ic1

)yt s yp ()]
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¢ . e (w)
Xl apt Z (a,cosnwit; + b,sinnw;t;) min
w1 1 1 - 2
. = (a +b )— - A w7 nwi,
—(acosa)ti‘*bsmwt,-)}, _ 2 E 2 JZ:) ”
N oo LS o
1 ‘ 1 2482y = 1 _
M, Z—E ag + Z(ancosnwlt,- + b,sinnwqt;) 2 2 (a]- ] ) Z A" W= nwy,
]\71:1 J=L#*n 1=l 3Fn

r=1
2
— (acoswt; + bsinwti)] .

We have M,==0 as a statistical average value. And
according to the mean value theorem, when ¢? takes a
minimum, g approximates f by use of the least
square technique, i.e. M;=0. Eq. (6) can be sim-
plified as:
erin(@) = Ms.
For an arbitrary integer n, the above equation can be
written as:
N oo
efnin(w) = # E [ E (a,cosjwit; + b]sinjculz‘z-)l2

t=1 ;=0,5%n
N

Z(a cosnwit; + b,sinnwit;
zfl

1

— acoswt; ~ bsinwt;)?.

This equation is equivalent to the following integral:

el (w) ‘—J [ Z (ajcosjwy t + bsm]wlt)] dr

1=0.5%n
+ ?Jo (a,cosnwit + b,sinnw, ¢

— acoswt — beoswt )2dt, (7
where T = NAt is the range of integration. The
function on the right-hand side of Eq. (7) can be sim-

plified as:
€rznin((u)
1 <2
) LJ (a] + 5°)
J=1h %0
+%(ai+b+ 2+ 0%, w 7 nwq,
2 Z (a2 +b7)
J=ha#n
+L( _ )2+l(b _b)2 _
2 a, a 2 n sy W — Nwy-

(8)
According to the least square technique, coefficients
« and b satisfy:
(an“a)Z‘L(bn—b)z%O, w = nwi,
a=0, 6 =0, w F nwi.
So when @ = nw;, the approximation error has a

minimum ;

&)

N af + sz and ¢; = arctan(b;/a,) is the

corresponding phase angle. This is the relation be-
tween the approximation error and . The driving
signal can be recovered by Eq. (9) and the other pa-
rameters of the original system can be recovered by
substituting the driving term in the P-S equation with

where A, =

the recovered driving signal if it is necessary.

2 The numerical experiment of extracting
the driving signal

2.1 Extracting driving signal with finite frequencies

We illustrate the advantages of our approach us-
ing Duffing equation as an example. Duffing equation
is a non-autonomous system widely used in the study
of nonlinear dynamics. It describes the nonlinear
characteristics of dynamic systems and is often met in
damping and isolating vibration systems. It can tran-
fer the driving signal of discrete spectrum into wide-
band chaotic noise. Generally, an equation with three

driving frequencies can be written as:
Y1 = V2

3
. 3
Y2 == Yoy2 — y1- yi + > Awcoswi. (10)
=1

The parameters in Eq. (10) are y, = 0. 1,
(A, w;)=1(35,1), (40, 4), (10, 13)}. Using the
fourth-order Runge-Kutta method with step-size
At =0. 01, the state variable y; of this system is
shown in Fig.2(a).

shown in Fig.2(b).
periodic signals are covered by the chaotic noise.

The corresponding spectrum is
It can be seen that the original

The least square approximation error can he ob-
tained by using Eq. (3) to approximate the time series
y1, as is shown in Fig.3. Since Ajg is smaller than
Ao by 25 dB and smaller than A,y by 27.7 dB, the
third minmum in Fig. 3 is a little shallow compara-
tively. The enlarged figure of the third minimum is
also given in Fig. 3.

In the above theoretical analysis (see Eq. (9))
when w = nwy, there is a jump to a minimum but in
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the remained area the approximation error is con-
stant. The three minimums which correspond to the
three driving frequencies can be seen very clearly in
Fig. 3. However, there are some small fluctuations
near the three minimums, which is caused by the
truncation and round-off error in numerical computa-
tion. These fluctuations can be ignored for their am-
plitudes are much smaller than the nearby minimums.

According to Eq. (9), we have the following re-
sults derived from Fig.3.

wy = 1.0007, o, = 4.0023, w; = 12.9932,

(2(w) = 3(AT+ AD) = 843.6712, (1)

1

(2 (w2)) = 7 (A + A2) = 679.0616, (12)

(e2n(w3)) = %(Ai + A?) = 1418.9572.

(13)

The solutions of Eqgs. (11) ~ (13) are:
A;=35.4168, A,=39.7941, A;=10.1870.

From the above example, it can be seen that the fre-
quency and the corresponding amplitude of the driv-
ing signal can be recovered more accurately. If neces-
sary, we can also estimate the parameter of system
¥0=0.1011 by Eq. (3). To check the similarity be-
tween the original system and the P-S equation, the
phase space of the original system is demonstrated in
Fig.4(a), which is derived from the observed state

variable y; and y,(y, = 3y, ). Fig.4(b) is the recov-
ered phase space derived from the above method. It
can be seen that the states of the two systems are very
similar.

Y2

-20t

Y2

-20

Fig. 4. The phase space of the original system (a) and the phase

space recovered by Eq. {3) (b).
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2.2 Extracting the periodic pulse train

Further, a periodic pulse train is used as the
driving signal, which actually is a driving signal com-
posed of infinite frequencies. A Duffing equation driv-
en by the periodic rectangular-shaped pulse train can
be written as:

3'/1 = Y

V2= Yova— yi— v +d(t), (14)
where parameter ¥ =0.1 and
E (1t/@2n)-nl<0.05, n=0,1,2,-)
0 (1t/Q2n)—n]>0.05, n=0,1,2,--)"
The period of the rectangular-shaped pulse train is
T =2x. The pulse width is = n/5 and its height is
E =178. The Fourier expansion of d(¢) can be writ-
ten in the form of

d(t) = %‘-&-2—,};125(1
n=1

d(t)=

n

T 2n
T "ot
where Sa is the sampling function. The former six
terms on the right-hand side of the above equation of

Ccos

)

d(+) can be expanded as follows.
d{t) =Aqy + Aycost + Ajgcos3t + AgcosSt
— Asgeos7t + Agocos9t + -+,
where the “true” amplitudes are:

Ap=17.7912, Ay =35.0000, As=33.2870,
Agp=230.5437, Ag=26.9297, Ag=22.6525, .
We integrate Eq. (14) and obtain the time series y;.
Then we use Eq. (3) to approximate the time series
vy of Eq. (14) and scan » within [0, 82]. Thus the
relation curve between the least square approximation

2 . . N
error € w) and w is obtained, as shown in Fig.5.
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Fig. 5. The relationship between the least square approximation

R
crror E;un(w) and w.

It can be seen clearly that the distribution of the
minimal values in Fig. 5 is very similar to the spec-
trum of the rectangular-shaped pulse train. According
to the analysis in the second section, using the mini-

mal values in Fig. 5 we can determine their corre-
sponding frequencies and amplitudes. This is com-
pared with the spectrum of the original driving signal
in Fig.6(a). The bars in Fig. 6 are the spectrum of
the original driving signal and the dotted line is the
recovered spectrum of the driving signal respectively.
They are quite close to each other. We can also obtain
the phase angle of the driving signal, which is shown
in Fig.6(b).
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Fig. 6. The spectrum of the original driving signal and the recov-

ered spectrum (a). The bars are the spectrum of the original driving
signal and the dots are the recovered spectrum. {b) The recovered

phase angle of the driving signal.

The driving signal is recovered from the ampli-
tude and phase angle given in Fig.6. It is shown in
Fig.7(b). Fig.7(a) gives the waveform of the origi-
nal driving signal. It can be concluded from Fig.7
that the driving signal can be recovered efficiently.

From the above analysis, it can be concluded
that an arbitrary periodic driving signal can be effec-
tively recovered by our approach.

3 Conclusion

We explored theoretically the approach of using
the P-S equation to extract driving signals from
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Fig. 7. The original driving signal (a) and the recovered driving
signal (b).

chaotic noise. The relationship between the approxi-
mation error and the frequency is obtained by scan-
ning the frequency. The spectrum of the driving sig-
nal is computed according to the relation between the
approximation error curve and the power spectrum of
the driving signal. The remained parameters of the
system can also be determined if necessary. Numeri-
cal experiment result shows that this approach can ex-
tract the periodic driving signal from the chaotic noise
generated by non-autonomous chaotic systems effec-
tively. This verifies our theory successfully.
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